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Summary 
 
An introduction to the constructive point of view in the foundations of mathematics, in 
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics due to 
A.A. Markov, and Bishop’s constructive mathematics, is provided in this chapter. The 
constructive interpretation and formalization of logic is described. For constructive 
(intuitionistic) arithmetic, Kleene’s realizability interpretation is given; this provides an 
example of the possibility of a constructive mathematical practice, which diverges from 
classical mathematics. The crucial notion in intuitionistic analysis, choice sequence, is 
briefly described and some principles, which are valid for choice sequences, are 
discussed. The second half of the article deals with some aspects of proof theory, i.e. the 
study of formal proofs as combinatorial objects. Gentzen’s fundamental contributions 
are outlined: his introduction of the so-called Gentzen systems, which use sequents 
instead of formulas and his result on first-order arithmetic showing that (suitably 
formalized) transfinite induction up to the ordinal 0ε  cannot be proved in first-order 
arithmetic. 
 
1.  Introduction 
 
1.1. Constructivism 
 
Since the beginning of the twentieth century several positions w.r.t. the foundations of 
mathematics have been formulated which might be said to be versions of constructivism.  
 
Typically, a constructivist view demands of mathematics some form of explicitness of 
the objects studied, they must be concretely representable, or explicitly definable, or 
capable of being viewed as mental constructions. We distinguish five variants of 
constructivism in this chapter: finitism, predicativism, intuitionism (INT), constructive 
recursive mathematics (CRM), and Bishop’s constructive mathematics (BCM). We will 
be brief about finitism and predicativism, and concentrate on the other three instead. 
 
Finitism insists on concrete representability of the objects of mathematics and avoids 
the higher abstractions. Thus, particular functions from `  to `  are considered, but the 
notion of an arbitrary function from `  to `  is avoided, etc. This curtails the use of 
logic, in particular the use of quantifiers over infinite domains. Infinite domains are 
regarded as indefinitely extendable finite domains rather than as completed infinite 
totalities. Finitism is not only of interest as a version of constructivism, but also as a key 
ingredient in Hilbert’s original program: Hilbert wanted to establish consistency of 
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formal mathematical theories by ‘finitistic’ means, since he regarded these as evidently 
justified and uncontroversial (see also below under 1.2). 
 
Predicativism concentrates on the explicitness and non-circular character of definitions. 
As a rule, in the predicativist approach the natural numbers are taken for granted; but 
sets of natural numbers have to be explicitly defined, and in defining a mathematical 
entity A  say, the definition should not refer to the totality of objects of which A  is an 
element. 
 
Intuitionism (INT). Intuitionism, as it is understood here, is due to the Dutch 
mathematician L.E.J. Brouwer (1881–1966). The basic tenets of intuitionism may be 
summarily described as follows. 
 

1. Mathematics is not formal; the objects of mathematics are mental constructions 
in the mind of the (ideal) mathematician. Only the thought constructions of the 
(idealized) mathematician are exact. 

 
2. Mathematics is independent of experience in the outside world, and mathematics 

is in principle also independent of language. Communication by language may 
serve to suggest similar thought constructions to others, but there is no guarantee 
that these other constructions are the same. (This is a solipsistic element in 
Brouwer’s philosophy.) 

 
3. Mathematics does not depend on logic; on the contrary, logic is part of 

mathematics. 
 
The first item not only leads to the rejection of certain theorems of classical logic, but 
also opens a possibility for admitting deviant objects, the “forever incomplete” choice 
sequences. Just as for Constructive Recursive Mathematics (CRM), the mathematical 
theories of INT are not simply sub-theories of their classical counterparts, but may 
actually be incompatible with the corresponding classical theory. 
 
Constructive Recursive Mathematics (CRM). A.A. Markov (1903–1979) formulated in 
1948–49 the basic ideas of constructive recursive mathematics (CRM for short). They 
are the following: 
 

1. Objects of constructive mathematics are constructive objects, concretely: words 
in various alphabets. 

 
2. The abstraction of potential existence (potential realizability) is admissible but 

the abstraction of actual infinity is not allowed. Potential realizability means e.g., 
that we may regard addition as a well-defined operation for all natural numbers, 
since we know how to complete it for arbitrarily large numbers. This 
admissibility is taken to include acceptance of ‘Markov’s Principle’: if it is 
impossible that an algorithmic computation does not terminate, it does in fact 
terminate. The rejection of actual infinity is tantamount to the rejection of 
classical logic. 
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3. A precise notion of algorithm is taken as a basis (Markov chose for this his own 
notion of ‘Markov-algorithm’). Since Markov-algorithms are encoded by words 
in suitable alphabets, they are objects of CRM; conversely, each word in some 
definite alphabet may be interpreted as a Markov algorithm. 

 
4. Logically compound statements have to be interpreted so as to take the 

preceding points into account. 
 
Markov’s principle holds neither in INT nor in Bishop’s Constructive Mathematics 
(BCM). 
 
Bishop’s Constructive Mathematics (BCM). Errett Bishop (1928–1983) formulated his 
version of constructive mathematics around 1967. There is a single “ideological” 
principle underlying BCM: 
 

1. proofs of existential statements must provide a method of constructing the object 
satisfying the specifications, 

 
and three more pragmatic guiding rules for the development of BCM: 

 
2. avoid concepts defined in a negative way; 
 
3. avoid defining irrelevant concepts — that is to say, among the many possible 

classically equivalent, but constructively distinct definitions of a concept, choose 
the one or two which are mathematically fruitful ones, and disregard the others; 

 
4. avoid pseudo-generality, that is to say, do not hesitate to introduce an extra 

assumption if it facilitates the theory and is satisfied by the examples one is 
interested in. 

 
Starting from the principles outlined above, three distinct versions of mathematics have 
been developed, which differ notably in their respective theories of the continuum, as 
will be explained further on. 
 
1.2. Proof Theory 
 
Proof theory owes its origin to Hilbert’s Program, i.e., the project of establishing 
freedom of contradiction for formally codified (substantial parts of) mathematics, using 
elementary, “evident” reasoning (finitistic reasoning). As shown by Gödel, in its 
original form this program was bound to fail. However, a modification of the program 
has been successful; one then asks to establish consistency using “evident” means of 
proof, possibly stronger than the system whose consistency is to be established. 
 
Structural proof theory studies formal mathematical (logical) proofs as combinatorial 
structures; various styles of formalization are compared. 
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Hilbert-Schütte style proof theory takes its starting point from Gentzen’s consistency 
proof for arithmetic, and compares formal systems with respect to their proof-theoretic 
strength, by analyzing the structure of suitably devised deduction systems. 
 
Interpretational proof theory compares formalisms via syntactic translations or 
interpretations. We shall encounter various examples below. 
 
2.  Intuitionistic Logic, I 
 
Although Brouwer was positively averse to formalization of mathematics, he was 
nevertheless the first to formulate and establish some principles of intuitionistic logic. 
But Kolmogorov in 1925 and Heyting in 1930 demonstrated that intuitionistic logic 
could be studied as a formalism. Formalizations of intuitionistic logic need an informal 
interpretation to justify them as codifications of intuitionistic logic. Heyting (1930, 
1934) and Kolmogorov (1932) each developed such an interpretation; their 
interpretations were later to be seen to be essentially equivalent. Heyting in particular 
built on some of Brouwer’s early papers. 
 
2.1. The BHK-interpretation 
 
The need for a different logic in the setting of INT, BCM and CRM becomes clear by 
considering some informal examples. 
 
The following is not acceptable as a constructive definition of a natural number: 

2  if    holds,   3  if    holdsn R n R= = ¬ , 
 
where R  stands for some mathematically unsolved problem, e.g., R  = The Riemann 
hypothesis. This is not a constructive definition because we cannot identify n  with one 
of the explicitly given natural numbers 0,1,2,3,4,…; for such an identification to be 
possible, we have to decide whether R  or R¬  holds, i.e., to decide the Riemann 
hypothesis. Note that the definition becomes acceptable as soon as problem R  has been 
solved. 
 
Example of a non-constructive proof:  Consider the following statement: there exist 
irrational numbers ,a b  such that ba  is rational. This statement has a very simple proof: 

22√√  is either rational or irrational. In the first case, take 2a b= = √ . In the second case, 
take 22 , 2a b√= √ = √ . The proof is obviously non-constructive, since it does not permit 
us to compute a  with any desired degree of accuracy. A constructive proof of the 
statement is possible, for example, by an appeal to a non-trivial theorem of Gelfond: if 

{0,1}a∉ , a  algebraic, b  irrational algebraic, then ba  is irrational, even transcendental. 
 
INT, BCM and CRM have the same logical basis, called intuitionistic logic or 
constructive logic, and which is a subsystem of classical predicate logic. The standard 
informal interpretation of logical operators in intuitionistic logic is the so-called proof-
interpretation or Brouwer-Heyting-Kolmogorov interpretation (BHK-interpretation for 
short). The formalization of intuitionistic logic started before this interpretation was 
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actually formulated, but it is preferable to discuss the BHK-interpretation first since it 
facilitates the understanding of the more technical results. 
 
We use capitals , , ,A B C …  for arbitrary formulas. Our logical operators are 

, , , , ,∧ ∨ → ⊥ ∀ ∃ . We treat A¬  as an abbreviation of A→⊥ , and we use ≡  denotes 
identity of strings and :≡  for definitions If E  is a syntactic expression, we write [ / ]x tE � 
for the result of substituting the term t  for the free variable x  in E ; it is tacitly assumed 
that t  is free for x  in E , that is to say, no variable free in t  becomes bound after 
substitution. We often use a more informal notation: if ( )xE  has been introduced in the 
discourse as an expression E  with some free occurrences of the variable x , we write 

( )tE  for [ / ]x tE �. 
 
On the BHK-interpretation, the meaning of a statement A  is given by explaining what 
constitutes a proof of A , and proof of A  for logically compound A  is explained in 
terms of what it means to give a proof of its constituents. Thus: 
 

1. A proof of A B∧  is given as a pair of proofs ,p q〈 〉 , where p  is a proof of A  
and q  is a proof of B . 

 
2. A proof of A B∨  is of the form 0, p〈 〉 , where p  is a proof of A , or 1, q〈 〉 , 

where q  a proof of B . 
3. A proof of A B→  is a construction q  which transforms any proof p  of A  into 

a proof ( )q p  of B . 
 
4. Absurdity ⊥  (‘the contradiction’) has no proof; a proof of A¬  is a construction 

which transforms any supposed proof of A  into a proof of ⊥ . 
 
To understand the meaning of the last chance for negation, note that this amounts to 
saying that A has no proof; and in this case every functional construction will do as a 
proof of A¬ . 
In the quantifier clauses, we assume the individual variables to range over a domain D ; 
the fact that d D∈  for some d  is not supposed to need further proof. (This is 
sometimes expressed by calling D  a basic domain; `  is an example.) 
 

5. A proof p  of ( )xA x∀  is a construction transforming any d D∈  into a proof 
( )p d  of ( )A d . 

 
6. A proof p  of ( )x A x∃  is a pair ,d q〈 〉  with d D∈ , q  a proof of ( )A d . 

 
The concepts of proof and construction in these explanations are to be taken as 
primitive; “proof” is not to be identified with any notion of deduction in any formal 
system. Obviously, the constructions in the clauses for implication and the universal 
quantifier are (constructive) functions. 
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Let us write . ( )x t xλ  for ( )t x  as a function of x  (so ( . ( ))( ) ( )x t x d t dλ = ). As an example 
of the BHK-interpretation, let us argue that ( )A A¬¬ ∨¬  is valid on this interpretation. 
 

(i)  If u proves A , then 0,u〈 〉  proves A A∨¬ . 
(ii)  If v proves ( )A A¬ ∨¬  and 0,u〈 〉 proves A A∨¬ , then 0,v u〈 〉  proves ⊥ .  
(iii) If v proves ( )A A¬ ∨¬ , then . 0,u v uλ 〈 〉  proves A¬  (by (i) and (ii)). 
(iv) If w proves A¬ , then 1, w〈 〉  proves A A∨¬ , so 1, . 0,u v uλ〈 〈 〉〉 proves A A∨¬  by 
(iii). 
(v)  If v proves ( )A A¬ ∨¬ , then 1, . 0,v u v uλ〈 〈 〉〉  proves ⊥  by (iv). 
(vi) . 1, . 0,v v u v uλ λ〈 〈 〉〉  proves ( )A A¬¬ ∨¬  (by (v)). 
 

- 
- 
- 
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